$Sunday-June\ 8^{th}$ 8:00-8:30 Short Course Registration 8:30-4:30 Short Course: Succeeding With a Dam Removal Project * 4:30-6:00 Ice Breaker & Conference Registration | | Monday - June 9th (Morning Session) | | | | | |-------|--|---|---|---|--| | Time | Track A | Track B | Track C | Track D | | | 7:45 | (Capital Ballroom A) | (Capital Ballroom B) | (Conference Room I) | (Conference Room II) | | | | T . | | and Breakfast | | | | 8:15 | Introduction and Welcome (Madison/Wisconsin Ballroom) | | | | | | 8:30 | "Listening to the Song of the River: Aldo Leopold, Watersheds, and the Land Ethic" Curt Meine, Aldo Leopold Foundation / Center for Humans and Nature (Madison/Wisconsin Ballroom) | | | | | | 9:15 | "Large River Restoration: The Need for Science-Based Adaptive Management" Larry Weber, University of Iowa: Iowa City, Iowa (Madison/Wisconsin Ballroom) | | | | | | 10:00 | • | | eak | , | | | | Session A1: Alignment
on Regional
Connectivity Priorities
and Goals: Launching
a Great Lakes
Regional Connectivity
Collaborative I: P.
Doran | Session B1: Culverts:
L. Mauldin | Session C1: Water
Management to
Improve Fish Habitat
in Dam Tailraces: T.
Lyons | Session D1: Fishway
Design: M. Melchior | | | 10:20 | P. McIntyre; Using optimization models to support barrier removal decisions for native migratory fishes in Great Lakes tributaries | H. Santos; Three
dimensional numerical
model of Stairs Pipe
culverts | R. Laughery;
Evaluating a Columbia
River Dam Tailrace
Habitat with CFD | A. Haro; Effect of Upstream Fish Passage Structure Entrance Design and Head Differential on Attraction and Entry of Adult Shortnose Sturgeon | | | 10:40 | M. Guyette; Accounting
for invasive species
when prioritizing
barrier removals in
Great Lakes tributaries | K. Hughes; Effective
mitigation techniques
for culverts | J. Gulliver; Prediction
of Total Dissolved Gas
below Overthrough
Spillways | E. Zapel; Innovative Hybrid Design of Issaquah Creek Hatchery Water Supply Intake Using Physical Scale Modeling as a Collaborative Tool | | | 11:00 | M. Herbert; Accounting
for the benefits:
mapping the key
tributaries for migratory
fish | S. Januchowski-
Hartley; A predictive
method for quantifying
road culvert passability | M. Politano; Taming Total Dissolved Gas using Advanced Computer Simulations and Reduced Scale Models | R. Greif; Innovative Fish Passage: A Cost- Effective Solution for High-Head Hydro | | | 11:20 | K. Dolata;
Implementing Strategic
Connectivity
Restoration Projects | K. Nichols; Newton
Creek Gets a Step Up | J. Syms; The Effect of
Turbulence in
Hydropower Dam Fish
Passageways on Pacific
Lamprey Passage | J. Turek; Design and
Construction Practices
for the Kenyon Mill
Step-Pool Nature-like
Fishway, Pawcatuck
River, Rhode Island | | | 11:40 | A. Beyer; The view from the field – what are the greatest policy needs and opportunities to get more of this work done | M. Yaw (M. Yaw & S.
Aston); Design and
Physical Model Testing
of a Bottomless Baffled
Culvert | N. Burnett; Burst
swimming in areas of
turbulent flow: delayed
consequences of
anaerobiosis in wild
adult sockeye salmon | B. Lake; The Coleman
Pond Fishway: Novel
site identification,
design, and construction
of a nature-like pool and
weir fishway. | | | 12:00 | | Lu | nch | | | | | Mo | onday - June 9 th (After | rnoon Session I) | | |------|---|--|--|---| | Time | Track A (Capital Ballroom A) | Track B
(Capital Ballroom B) | Track C
(Conference Room I) | Track D
(Conference Room II) | | | Session A2: Alignment on Regional Connectivity Priorities and Goals: Launching a Great Lakes Regional Connectivity Collaborative II: P. Doran | Session B2: Reference Reach or Doppelganger? How do we know an analog fits a restoration site or adapt for success?: D. Ruttenberg | Session C2: Fish
Guidance &
Protection I | Session D2: Fish Passage Policy Around the World: T. Ehlinger | | 1:30 | S. Sowa; The Great
Lakes IMDS: Helping
advance lanscape-scale
collaboration and
strategic conservation | M. Chelminski; Reconnaissance-Level Assessment of Dam Removal for Upstream Fish Passage | D. Hayes; Emergency Pumping Plant Fish Protection Screens at California's Red Bluff Diversion Dam | M. Redeker; An Overview Of The New German Fishway Standard For Upstream Fish Passage | | 1:50 | T. Hogrefe; Developing regional goals for connectivity restoration | S. Allen; Design Challenges using Reference Reaches in Manipulated Watersheds | U. Dumont; Installation
of a pilot plant for fish
protection an bypass
systems | R. Celebi; The Legal
Status of Fish Passage
and Challenges In
Turkey | | 2:10 | M. Brouder; Toward a
shared vision and
strategy for improving
connectivity across the
Great Lakes basin | J. MacBroom;
Reference Reaches;
Opportunities and
Limitations | D. Lentz; North Battle
Creek Feeder Fish
Screen and Fishway
Model | C. Bozek; Green Infrastructure and Blue Habitat- making the connection in Massachusetts | | 2:30 | P. Doran; Discussion
and closing remarks | A. Selle; Channel Restoration during Dam Removal – Letting the River do the Work. Lessons from the Brown Bridge Dam Removal | D. Erickson; Design, Construction, Installation and Operation of Three Large Scale Netting Fish Barrier Projects | J. Hastings; Developing
Habitat for the Wild &
Rare | | 2:50 | | Bre | eak | | | | Monday - June 9th (Afternoon Session II) | | | | |-----------------|---|--|--|--| | Time | Track A (Capital Ballroom A) | Track B
(Capital Ballroom B) | Track C
(Conference Room I) | Track D
(Conference Room II) | | | Session A3: Great
Lakes Lamprey
Research, Management
and Policy I: A. Selle | Session B3: Fishway Monitoring and Evaluation: T. Castro- Santos | Session C3: Fish Guidance & Protection II: K. Mulligan | Session D3: Stream Simulation Design of Road-Stream Crossings: R. Gubernick | | 3:10 | M. Siefkes; Great Lakes Fishery Commission Policy on Sea Lamprey Barriers and Dam Removals | Joint ASCE-EWRI & AFS-BES Committee Award Winners | S. Scott; Barrier Nets
for Fish Guidance and
Reduction of
Entrainment at Water
Intakes | R. Gubernick; Stream
Simulation Design in
High Gradient Channels | | 3:30 | J. Barber; Fixed-crest
sea lamprey barrier
design and operation | T. Castro-Santos;
Cumulative delay and
passage performance of
sea lamprey ascending
four fishways. | S. Amaral; Evaluation
of Bar Rack Spacing
and Approach Velocity
for Preventing
Entrainment of Silver
American Eels at
Hydropower Projects | D. Higgins; Stream
Simulation in Very Low
Gradient Channels | | 3:50 | R. McLaughlin; Passage options for walleye and lake sturgeon at the dam site on the Black Sturgeon River, Lake Superior, Canada | C. Bunt; Unintended
Fishway Passage and
Transport of Native and
Non-Native Lampreys
(Petromyzontidae) | M. Politano; Modeling
of a non-physical fish
barrier | J. Olson; Do Stream
Simulation Culvert
Designs Improve
Ecosystem Function? A
Case Study in Northern
Wisconsin | | 4:10 | R. McLaughlin; The efficacy of seasonally operated barriers for sea lamprey control and passage of non-target fishes | J. Raabe; Evaluation of
Fish Passage Following
Installation of a Rock
Arch Rapids at Lock
and Dam #1, Cape Fear
River, North Carolina | C. Gurshin (B. Lenz); Increased Downriver Passage of Juvenile Blueback Herring after Reconfiguring an Ultrasonic Field | S. Eggert; Benefits of
Stream Simulation
Design Culverts on
Biological Productivity | | 4:30 | N. Johnson; The quest
for an effective non-
physical migration
barrier for invasive sea
lamprey | M. Weiland; Analysis of Multiyear Acoustic Telemetry Data to Assist in Determining Operations at Bonneville Dam on the Columbia River | M. O'Farrell; Use of
Electric Fish Guidance
Technology to Deter
Salmonids from
Entering Hydro
Tailraces and Intake
Canals: Two Case
Studies | M. Weinhold; Stream
Simulation Lessons
Learned – Case Studies
from Here and There | | 4:50 | P. Hrodey; A New Tool
to Trap and Sort
Migrating Adult Sea
Lamprey | L. Hahn; Fishway use
and movements of giant
migratory catfishes
downstream of a large
hydropower dam in the
Brazilian Amazon | TBD | H. Bentz; Factors to
Consider When
Selecting a Structure for
an AOP Design | | 5:10 | | Intermission | | | | 5:30 to
7:30 | P | oster Session and Social (U | University Rooms A/B/C/ | D) | | 5:45 to
6:45 | Extended discuss | Extended discussion: Great Lakes Connectivity Restoration (University Rooms A/B) | | | | | Tu | esday – June 10 th (Me | orning Session) | | | | |-------|--|--|--|---|--|--| | Time | Track A Track B Track C Track D (Capital Ballroom A) (Capital Ballroom B) (Conference Room I) (Conference Room II) | | | | | | | 7:45 | Registration and Breakfast | | | | | | | 8:15 | Introductions (Madison/Wisconsin Ballroom) | | | | | | | 8:30 | | | ctives on Environmental F
oundation (Madison/Wisc | | | | | 9:15 | "The Broad Implications of Connectivity" Luther Aadland, Minnesota Department of Natural Resources Stream Habitat Program (Madison/Wisconsin Ballroom) | | | | | | | 10:00 | | Br | eak | | | | | | Session A4: Great
Lakes Lamprey
Research, Management
and Policy II: A. Selle | Session B4: Fish
Passage and Fluid
Dynamics Modeling:
M. Chelminski | Session C4: Fish Passage in the Midwest and the Challenges of Invasive Species and Disease: N. Utrup | Session D4: Case
Studies I: J. Morales | | | | 10:20 | N. Johnson; Alternatives to sea lamprey barriers: pheromones and trapping | H. Santos; Fish
numerical model based
on fish behavior in
flumes | D. Caneff; Social and
Political considerations
for Fish Passage at
Hydro Dams in the Age
of Asian Carp and
Other AIS | S. Arnold; Fish Passage Enhancement at York Haven Dam – Reconnecting the Lower Susquehanna River | | | | 10:40 | T. Neeson; Accounting
for sea lampreys in a
Great Lakes barrier
removal decision
support tool | B. Duarte (H. Santos); Three dimensional multiphase CFD model for studies of fish behavior: an application to Três Marias dam (Brazil) | N. Frohnauer; Don't
Forget the Natives! | P. Foote; Installation of
Successful Combined
Denil Fishway and
Eelway at Upper Mystic
Lake, MA | | | | 11:00 | J. Carey; Lamprey
Barrier Design and Fish
Passage in Great Lakes
Tributaries | A. Schlindwein; The 3-
Dimensional Design of
Midwestern Grade
Control Structures for
Karman Gait Fish
Passage Characteristics | G. Whitledge; Natal
environment and
movement of Asian
carps in the upper
Mississippi River
inferred from otolith
chemistry | M. Clay (S. Milligan); Process for Selecting the Optimum Location for a Juvenile Fish Bypass Outfall at Lower Granite Lock and Dam | | | | 11:20 | | A. Amado; An approach to model swimming behavior of smolts in the forebay of hydro dams | S. Tripp; Asian carp
expansion in the
Mississippi River:
Focusing on the leading
edge of the stronghold | K. Martin; Fish Passage
Facilities as Part of the
Penobscot River
Restoration Project | | | | 11:40 | PANEL | N. Nekouee; Fish
Passage Design Using
CFD Modeling | N. Utrup; Fish passage
at hydropower dams in
Wisconsin and concerns
with invasive species,
disease, and
contaminants | J. Renholds; Prototype
modifications within a
flood control channel to
improve fish passage in
Mill Creek near Walla
Walla, WA | | | | 12:00 | | Lu | nch | | | | | | Tuesday – June 10 th (Afternoon Session I) | | | | |------|--|--|---|---| | Time | Track A (Capital Ballroom A) | Track B
(Capital Ballroom B) | Track C
(Conference Room I) | Track D
(Conference Room II) | | | Session A5: Lake
Sturgeon Passage on
the Menominee River I:
C. Alsberg | Session B5:
Prioritization: A.
Singler | Session C5: Fish
Passage at Whitewater
Parks: J. Rathbun | Session D5: Case
Studies II: T. Osting | | 1:30 | J. Fossum; History of
the Menominee River
multi-partner fish
passage initiative | R. Weiter; Barrier Removal Prioritization for Stream Resident Species on the Westfield River in Western Massachusetts | M. Kondratieff;
Whitewater Park
Hydraulics:
Implications for Fish | S. Hunter; Hydraulic
analysis and risk
assessment of a
proposed fish barrier for
Johnson Creek, Utah. | | 1:50 | R. Elliott; Habitat and population based rational for lake sturgeon passage on the Menominee River | M. Keefer; Metrics to identify fishway passage bottlenecks in the multi-species Columbia River | A. Ficke; Are whitewater parks movement barriers to Great Plains fishes? | J. Mann; Design and Management of a Multifaceted Fish Passage Improvement Project | | 2:10 | M. Donofrio; Green
Bay Lake Sturgeon
Spawning Fidelity | E. McCombs; Dam removal and freshwater mussels: effective restoration and prioritization through case studies | T. Stephens; Spatially explicit hydraulic analysis of the effects of whitewater parks on fish passage | R. Voicu; Presentation the history of fish ladder construction in România and one concrete frontal solution that can achieve longitudinal connectivity of the Crişul Repede River. A case study | | 2:30 | N. Utrup; Can we attract lake sturgeon to a fishway? | M. Diebel; A Screening Method for Identifying Fish Passage Barriers at Road Crossings Using LiDAR-Derived Elevation Data | J. Conyngham; Recreational Amenities as Unintended Passage Barriers: Hydraulic Characterization of a Whitewater Play Wave | B. Ghosh; Hydraulic impact on fish migration in a sariakandhi fish pass of Bangladesh. | | 2:50 | | Br | eak | | | | Tues | day – June 10 th (After | rnoon Session II) | | |------|--|---|---|----------------------| | Time | Track A | Track B | Track C | Track D | | | (Capital Ballroom A) Session A6: Lake | (Capital Ballroom B) Session B6: Fish | (Conference Room I) | (Conference Room II) | | | Sturgeon Passage on
the Menominee River
II: C. Alsberg | Migration and Movement Studies: M. Lang | Session C6: Downstream Passage: J. Rothlisberger | | | 3:10 | J. Waldrip; Lake Sturgeon Passage at Five Hydroelectric Dams on the Menominee River | W. de Bruijne; Towards
a Healthy Danube - Fish
migration at the Iron
Gate dams | M. Chelminski; Go with
the Flow: Scoping,
Design, and
Implementation of a
Downstream Fish
Passage System at a
FERC-Licensed
Hydroelectric Facilities | | | 3:30 | C. Tomichek; Estimating Downstream Passage Efficiencies for Sturgeon Under Different Scenarios | M. Kirk; Using network
theory to formulate
behavioral inferences
from the movement
patterns of Chinook
salmon and Pacific
lamprey | T. McCarthy; Conservation of Anguilla anguilla in Ireland by trap and transport of silver-phase eels from sites upstream of hydropower dams | | | 3:50 | R. Alsberg; A Hydro
Owner's Perspective on
Planning, Consultation,
and Implementation of
Lake Sturgeon Passage
on the Menominee | L. Hahn; Movements of dourado (Salminus brasiliensis) transported upstream of a dam in a subtropical river in southern Brazil | S. Amaral; Downstream Passage Survival Analysis for a Proposed Hydro Project in Estonia | | | 4:10 | D. Caneff; Multi-
stakeholder
partnership: keys to
successful planning and
implementation of fish
passage from the NGO
perspective | N. Bett; Homestream
Detection by Pink and
Sockeye Salmon in a
Regulated River System | D. Dixon; Alden Fish-
Friendly Hydropower
Turbine Development
Status | | | 4:30 | PANEL (N. Utrup; J. Fossum; D. Caneff; R. Alsberg; | C. Middleton; Effects of daily varying natal olfactory cues on Pacific salmon migration success in a river regulated by hydropower generation | M. Ahmann; Employing the TSP Design Process to Design Replacement Turbine Runners for the Ice Harbor Lock and Dam | | | 4:50 | R. Elliott; M. Donofrio;
K. Kruger; J. Waldrip;
C. Tomichek) | D. Nyqvist; Downstream Migration of Landlocked Atlantic Salmon Kelts and smolts in the River Klarälven, Sweden | L. Hanna; Helix Design
for Downstream Fish
Passage | | | 5:10 | | Intern | nission | | | 5:30 | P | oster Session and Social (| University Rooms A/B/C/I | D) | | 6:00 | Ban | quet – Cash Bar Begins (I | Madison/Wisconsin Ballro | oom) | | 6:30 | | Banquet - Dinner (Madi | son/Wisconsin Ballroom) | | | | Wed | lnesday – June 11 th (N | Iorning Session) | | |-------|--|--|---|----------------------| | Time | Track A | Track B | Track C | Track D | | Time | (Capital Ballroom A) | (Capital Ballroom B) | (Conference Room I) | (Conference Room II) | | 7:45 | | Registration a | and Breakfast | | | 8:15 | Introductions (Madison/Wisconsin Ballroom) | | | | | 8:30 | "Decisions for the Dammed in an Uncertain World" | | | | | 0.50 | | University of Guelph: Ont | | | | 9:15 | Paul Kemp, Universi | ty of Southampton: South | | (Madison/Wisconsin | | 10:00 | Ballroom) Break | | | | | 2000 | Session A7: Movements | | | | | | of Native and Invasive | | Carrier Of William | | | | Fishes in the Midwest | Session B7: | Session C7: Wisconsin
Fish Passage and | | | | Implications and | Connectivity: M. Diebel | Habitat Restoration: | | | | Considerations of | Connectivity: W. Dieber | A. Struck | | | | Behavioral Deterrent | | | | | | Systems I: B. Ickes | | A. Struck; Ozaukee | | | | | | Fish Passage Program - | | | | B. Ickes; The situational | W. M. J. F. J. J. J. | Making Connections | | | | context for fish passage | K. Moody; Ecological
Structures for the | Across Our Watersheds: | | | 10:20 | issues in the Upper | Waller Creek Tunnel | Active restoration of | | | | Mississippi River | Project | riparian migratory | | | | System | | corridors in the Lake | | | | | | Michigan Basin in | | | | | R. Schneider; Re- | Ozaukee County | | | | G. Sass; The effects of | plumbing roadside ditch | C. Nenn; Advancing | | | 10.40 | visual and acoustic | networks to reduce | Fish Passage in the | | | 10:40 | deterrents to prevent the | flooding, dry-outs and | Menomonee River | | | | upstream movement of Asian carps | water pollution for | Watershed | | | | 7 Islan carps | healthier streams | | | | | R. Koth; Lock and Dam | S. Railsback; Complex | D. Fowler; Thinking Outside the Box | | | 11:00 | #1, Asian carp barrier | effects of partial barriers on a simulated | Culvert, Floodplain | | | 11.00 | alternatives analysis; | watershed trout | Management and Urban | | | | the known unknowns | population | Stream Rehabilitation | | | | C. Chizinski (P. | | | | | | Sorensen); Differences | E. Oborny (T. Osting); | B. Wentzel; Habitat | | | | in the spring time | Stream and vegetative | Enhancement in | | | 11:20 | upstream migrations of | habitat restoration in a | Conjunction with Fish | | | | invasive common carp (Cyprinus carpio) and | spring-fed stream to augment endangered | Passage in Southeastern | | | | native northern pike | species habitat | Wisconsin | | | | (Esox luci | F | | | | | D. Zielinski; | R. Voicu; Presentation a | | | | | Engineering a bubble | technical solution that | D. Marshall; Oxbows | | | 11:40 | curtain deterrent system | can achieve longitudinal | and Sloughs: | | | | to deter the movement | connectivity (upstream- | Wisconsin's Forgotten | | | | of common carp through shallow streams | downstream) of the
Crişul Repede River | Lakes | | | 12:00 | unough shallow streams | Lui | neh | | | 14:00 | | Lu | исп | | | | Wednesday – June 11 th (Afternoon Session) | | | | |-----------------|--|--|---|---------------------------------| | Time | Track A
(Capital Ballroom A) | Track B
(Capital Ballroom B) | Track C
(Conference Room I) | Track D
(Conference Room II) | | | Session A8: Movements of Native and Invasive Fishes in the Midwest Implications and Considerations of Behavioral Deterrent Systems II: D. Zelinski | Session B8: Barrier
Removal: J. Rathbun | Session C8: Climate &
Temperature Impacts
on Fish Passage: N.
Gillespie | | | 1:30 | J. Gross; Effects of a
sweeping low frequency
pulsed DC electrical
field on Asian carp
behavior in a zero flow
environment | A. Singler; Mapping
Dam Removal Success:
Lessons from United
States Dam Removals | M. Lang (D. Crowder); A Sensitivity Analysis of How Regional Climate Differences and Fish Passage Criteria Affect Steelhead Migration Opportunity | | | 1:50 | M. Gaikowksi;
Response of fishes to
the operation of water
guns | L. Wildman; The
Biggest Barriers to
Barrier Removal | J. Lyons; Conserving riverine lake sturgeon in Wisconsin under a warming climate: the importance of connectivity | | | 2:10 | A. Murphy; Impaired
waterbody restoration
utilizing electric fish
barrier technology to
exclude invasive carp | T. MacDonald;
Restoring Minnesota
Falls after a Century of
Submergence | M. Weinhold; Using a Climate Change Vulnerability Assessment to Prioritize Aquatic Organism Passage Projects | | | 2:30 | C. Dennis III; Use of carbon dioxide as a non-physical barrier to deter fish movement | L. Hollingsworth-
Segedy; Opportunistic
vs Strategy: Raising the
bar for stream barrier
removals in western PA | C. Caudill; Indirect Effects of Impoundment on Migrating Fish: Temperature Gradients in Fish Ladders Slow Dam Passage by Adult Chinook Salmon | | | 2:50 | | Conference Sessions End | | | | 3:15 to
5:15 | | | nl Goals for Connectivity I
ns* (Conference Room II) | | | | Thursday – June 12 th | | | |------|--|--|--| | 8:00 | Tour Departs for the Milwaukee River Watershed and Lake Michigan Basin * | | | | 5:30 | Tour Returns to Madison / End of All FP2014 Related Activities | | |